111 research outputs found

    Auditory Conflict Resolution Correlates with Medial–Lateral Frontal Theta/Alpha Phase Synchrony

    Get PDF
    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters “A” or “O”. They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60–110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance

    Brain Networks of Novelty-Driven Involuntary and Cued Voluntary Auditory Attention Shifting

    Get PDF
    In everyday life, we need a capacity to flexibly shift attention between alternative sound sources. However, relatively little work has been done to elucidate the mechanisms of attention shifting in the auditory domain. Here, we used a mixed event-related/sparse-sampling fMRI approach to investigate this essential cognitive function. In each 10-sec trial, subjects were instructed to wait for an auditory “cue” signaling the location where a subsequent “target” sound was likely to be presented. The target was occasionally replaced by an unexpected “novel” sound in the uncued ear, to trigger involuntary attention shifting. To maximize the attention effects, cues, targets, and novels were embedded within dichotic 800-Hz vs. 1500-Hz pure-tone “standard” trains. The sound of clustered fMRI acquisition (starting at t = 7.82 sec) served as a controlled trial-end signal. Our approach revealed notable activation differences between the conditions. Cued voluntary attention shifting activated the superior intra­­parietal sulcus (IPS), whereas novelty-triggered involuntary orienting activated the inferior IPS and certain subareas of the precuneus. Clearly more widespread activations were observed during voluntary than involuntary orienting in the premotor cortex, including the frontal eye fields. Moreover, we found ­evidence for a frontoinsular-cingular attentional control network, consisting of the anterior insula, inferior frontal cortex, and medial frontal cortices, which were activated during both target discrimination and voluntary attention shifting. Finally, novels and targets activated much wider areas of superior temporal auditory cortices than shifting cues

    Subjective cognitive complaints and permanent work disability : a prospective cohort study

    Get PDF
    Purpose Work disability (WD) is a medico-legal concept that refers to disability benefits (DB) granted due to diseases. We assessed whether subjective cognitive complaints (SCC)-presenting as self-rated difficulties of concentration, memory, clear thinking, and decision making-predict permanent WD in knowledge-intensive occupations. Methods In this prospective cohort study with up to 7-year follow-up, we combined the SCC questionnaire results with reliable registry data on the DBs of 7161 professional/managerial employees (46% females). We excluded employees who were on long-term sickness absence (SA) or had received a DB at baseline. The exposure variable was the presence of SCC. Age and SA before the questionnaire as a proxy measure of general health were treated as confounders and the analyses were conducted by gender. The outcome variable was a granted DB. The cumulative incidence function illustrates the difference between SCC categories, and the Fine-Gray model estimates the predictors of WD during the 8-year follow-up. Results The annual incidence of DB was 0.15% in the entire cohort: 0.18% among the females, and 0.12% among the males (p = 0.795). The most common primary reasons for permanent WD were mental (36%) and musculoskeletal (20%) disorders. SCC predicted DB in both genders when controlling for age and prior SA. Hazard ratios were 2.9 with a 95% confidence interval 1.4-6.0 for the females and 3.7 (1.8-7.9) for the males. Conclusion Subjective cognitive complaints predict permanent WD in knowledge-intensive occupations. This finding has implications for supporting work ability and preventing work disability among employees with cognitively demanding tasks.Peer reviewe

    Association of lifetime major depressive disorder with enhanced attentional sensitivity measured with P3 response in young adult twins

    Get PDF
    Major depression is associated with alterations in the auditory P3 event-related potential (ERP). However, the persistence of these abnormalities after recovery from depressive episodes, especially in young adults, is not well known. Furthermore, the potential influence of substance use on this association is poorly understood. Young adult twin pairs (N = 177) from the longitudinal FinnTwin16 study were studied with a psychiatric interview, and P3a and P3b ERPs elicited by task-irrelevant novel sounds and targets, respectively. Dyadic linear mixed effect models were used to distinguish the effects of lifetime major depressive disorder from familial factors and effects of alcohol problem drinking and tobacco smoking. P3a amplitude was significantly increased and P3b latency decreased, in individuals with a history of lifetime major depression, when controlling the fixed effects of alcohol abuse, tobacco, gender, twins' birth order, and zygosity. These results suggest that past lifetime major depressive disorder may be associated with enhanced attentional sensitivity.Peer reviewe

    Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG

    Get PDF
    Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain
    corecore